Tag Archives: Qualification

PLC/HMI IOQ – What to Test?

PLC

Hello good people of the world! Today’s post is on initial control system Installation and Operational Qualification (IOQ) of a simple system consisting of an Human/Machine Interface (HMI), Programmable Logic Controller (PLC), and any number of end devices (valves, pumps, sensors, etc.). The question is what should be tested?

Obviously there’s a ton of guidance out there (see e.g.: GAMP) that will have a lot more detail than this post. The purpose here is to list at a high level the tests that could be expected. So let’s get started!

Installation Qualification
IQ can be its own protocol or combined with OQ in an IOQ for cases without a ton of complexity. IQ is supposed to verify the installation of hardware, software, and any peripherals. You also want to check what documentation is available/applicable here. IQ tests may include:

  • Documentation Verification (e.g. SOPs, EREC/ESIG assessment, operating/maintenance manuals, panel and electrical drawings, etc.)
  • Hardware Verification: verify the make and model of major components at a minimum
  • Software Verification: verify/record software versions. You’ve got to know what you’ll be OQ’ing!
  • Configuration Verification: verify any hardware and/or software configuration. This could be two tests, one for hardware, one for software.
  • Loop Check Verification: verify loop checks are performed.
  • Alarm Configuration Verification: ideally alarms a setup in such a way that you don’t have to functionality test them all!
  • Any other critical installation items

Operational Qualification
OQ is the meat of your control qualification. Here you want to test critical functions, that hopefully you have identified earlier (see here for one approach). OQ may test:

  • Interlock Verification including e-stops. A lot of interlocks are safety/business related, but they’re often included in OQ due to how critical they are.
  • Functional Alarm Verification – be sure to include data loss/communication alarms
  • HMI Navigation and Layout Verification
  • Restart/Recovery Verification
  • Sequence of Operations Verification

What kinds of testing are you sure to cover in your control system IOQ protocols? Comment below.

Like this MWV (Mike Williamson Validation) blog post? Be sure to like, share, and subscribe!

Validation Project Plans

develop-project-plan-1200x480

Hello good people of the world! Today’s post is about Validation Project Plans, which is a specific type of project plan for projects in the pharmaceutical, biotechnology, and medical device regulated industries. This post covers Validation Project Plans for pharmaceutical/biotechnology industries in particular.

Often I’ve see Validation Project Plans contain a lot of fluff but little meat, making them of less value to the project team. A good project plan clearly documents the following, at a minimum:

  1. What facilities, systems, and equipment are in scope of the plan
  2. What are the expected activities and deliverables
  3. Who is responsible for what
  4. What is the validation approach and rationale for that approach
  5. What happens after the validation scope covered in the plan is completed (i.e. ongoing requirements)

Note I do not include project cost or schedule in a project plan, because these are often changing rapidly and should be maintained in a less controlled, more flexible manner, e.g. with scheduling software for a schedule.

The plan itself should be controlled (i.e. approved and revision controlled) as soon as possible in the project but early enough so that scope will not change (too much).

Additional things to think about when drafting your plan:

  1.  Commissioning versus Qualification versus Validation. If your project has multiple phases (and any decent-sized project should), be sure to clearly state responsibilities and deliverables at each stage.
  2. Include references to regulations, industry guidance, and site procedures that govern your plan. Make it clear to everyone who reads the plan what framework you are working inside.
  3. The purpose and scope of the document should be clear and up front.
  4. Get buy-in from all functional groups by having them approve the document.
  5. Like all controlled documents, the plan should have version/revision history.
  6. Use tables to clearly present information.

I put together a quick template here:

Validation Project Plan Template MWV

What do you feel is necessary in a Validation Project Plan? Comment below.

Like this MWV (Mike Williamson Validation) blog post? Be sure to like, share, and subscribe!

 

 

Specifications: How to Write Them

GAMP V Model

Hello good people of the world! Today’s post is about the left side of GAMP’s V-model: specifications. Specifically, their purpose and how to write them.

Of course there are many variations of the V-model, and it is best to find what suits your organization and processes. For the purposes of this discussion, I’ll refer to the basic GAMP V-model, pictured above.

The specifications are: User Requirements Specification, Functional Specification, and Design Specification. In general each feeds in to the next. Also, Installation Qualification may test the details of the Design Specification, Operational Qualification may test the functional descriptions in the Functional Specification, and Performance Qualification may test the high-level requirement’s of the User Requirements Specification, although these boundaries are often blurred in practice.

Any new project should start with a User Requirements Specification which clearly defines the testable user requirements. It is important that requirements are testable, and often a SMART approach is applied: each user requirements should be Specific, Measurable, Achievable, Relevant, and Time-bound. It is also helpful to categorize user requirements upfront, since not all will be quality-related. This makes it easier to rationalize the requirements that are explicitly tested in qualification protocols versus commissioning or not at all. Typical categories include: business, safety, maintenance, and quality.

The Functional Specification is then a response to the User Requirements Specification, typically provided by the vendor, explaining in detail how automated components will function to fulfill the user requirements. Functional Specifications are often confused with Functional Requirements or Functional Requirements Specification, which may be another document defined by a process. GAMP’s V-model does not intend the Functional Specification to document new or further detail requirements, but to define the functionality employed to meet the requirements defined in the User Requirements Specification. The Functional Specification can describe sequence of operations, interlocks, alarms, etc.

The Design Specification should provide sufficient detail that an engineer could recreate the control system from scratch if need-be, to recreate the functionality described in the Functional Specification to meet the user requirements. The Design Specification is typically provided by the vendor and should contain such details as I/O list, alarm list, HMI security levels, sequence of operations details including device positions at each step and transition conditions. This should be a very detailed document, and if you’re working with 10-20 pages it is too light.

Documentation can be expensive and is maybe not fun to generate and review, but is critical to a highly effective validation program.

What do you like to see in specifications?

Like this MWV (Mike Williamson Validation) blog post? Be sure to like, share, and subscribe!

 

Basic Components of a Test Form

Hello good people of the world! Today’s post is a short one on what are the basic components of a test form. In Validation, you’re going to record a lot of data, and you want this data to be well organized and easily understood. Here are the basic components I think every test form should have:

  1. Numbering! Each step should have a unique number so that it is easily identifiable and easy to reference elsewhere.
  2. A Title! What is this test all about? A short description should be provide.
  3. Purpose! What is the purpose of the test? Make it clear.
  4. Verification Steps! Clearly define what steps need to be performed.
  5. Expected Results! Clearly define what the expected results are. Does every step need an expected result? Every step can have one, so include it.
  6. Actual Results! This is where the actual data is collected. The actual results can be recorded exactly as the expected results are stated to avoid any confusion.
  7. Pass/Fail! Did the step pass or fail? This will quickly tell you. Also a good place to reference any comments.
  8. Initials/Date! In order for the data to be attributable, initial/date uniquely identifying the test executer must be included for each step.

What basic components do you include on your test forms? Comment below.

Like this MWV (Mike Williamson Validation) blog post? Be sure to like, share, and subscribe!

WHO’s Draft Guidelines on Validation May 2016

Hello good people of the world! On May 15, 2016, the World Health Organization released its draft Guidelines on Validation. It is available on the WHO website for download here.

This post covers my review of the guidance. Continue reading WHO’s Draft Guidelines on Validation May 2016

Considerations in SaaS Validation

SaaS Qualification

Hello good people of the world! Today’s post is about qualifying Software as a Service (SaaS), also known as “cloud-based” or “hosted” software. Simply, SaaS is any computer system in which any server is not hosted by the system owner. Here are some key considerations in qualifying SaaS computer systems:

Continue reading Considerations in SaaS Validation

Container Closure Integrity Testing

Hello good people of the world! The present post concerns itself with Container Closure Integrity (CCI) testing. CCI testing is an integral part of packaging validation, involving primary packaging such as ampoules, blisters, bottles, vials, syringes, tubes, etc. Biopharmaceuticals are typically packaged in hermetically-sealed containers to prevent the ingress of any liquid or gas that could be reactive or carry microorganisms. Packaging may also by light-resistant, if light could affect the properties of the product.

There are three regulatory/industry guidelines typically cited in the U.S. regarding CCI testing:

  1. FDA Guidance for Industry (2008), Container and Closure System Integrity Testing in Lieu of Sterility Testing as a Component of the Stability Protocol for Sterile Products
  2. PDA Technical Report No. 27 (1998), Pharmaceutical Package Integrity (not available for free)
  3. USP <1207>, Sterile Product Packaging – Integrity Evaluation

CCI testing is either physical (bubble, liquid tracer, vacuum/pressure decay, dye ingress, etc.) or microbial (microbial ingress).

Each has it’s advantages and disadvantages, as shown in the below from American Pharmaceutical Review:

When should these tests be performed? CCI testing is applicable to new container closure systems and can be performed on newly sealed containers to validate sealing performance, and then annually and at the expiration date to validate stability.

What are your preferred methods of Container Closure Integrity Testing?

Like this MWV (Mike Williamson Validation) post? Be sure to like, share, and subscribe!